Name:	Subject: Mathematics	Class: 12 th	Time: 80 minutes	Total Marks:	40
Chapter No.07	MJDexpert.com			Obtained marks	

Note: Please attempt any 10 short questions from Question 2. Also, attempt both parts of Question 3. Cutting and removal of any content is strictly prohibited.
 Question No 01:- Choose the Right Answer.

(10x1=10)

i.	The scalar quantity is the following is	Force	Displacement	Velocity	Temperature				
ii.	A physical quantity that can be specified	Scalar	vector	constant	Variable				
	by a number along with unit is called a								
iii.	If α , β , γ are the direction cosines of a	3	2	1	<u>0</u>				
	vector then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma =$								
iv.	The vector lying in the same plane are	Collinear	Perpendicular	Coplanar	Parallel vector				
	called:	vector	vectors	vector					
v.	Zero vector is perpendicular to	Every vector	Unit vector only	Position vector only	Not any vector				
vi.	The non – zero vectors \underline{a} and \underline{b} are	-1	1	0	ab				
vii	Volume of parallelenined with $u = w$ are	11 × 17 W	1,	1	1,				
v	its co – terminal edges is	$\underline{u} \wedge \underline{v} \cdot \underline{w}$	$\frac{1}{3}(\underline{u} \times \underline{v} \cdot \underline{w})$	$\frac{-}{6}(\underline{u} \times \underline{v} \cdot \underline{w})$	$\frac{1}{2}(\underline{u} \times \underline{v} \cdot \underline{w})$				
	to to terminal eages is								
viii.	Vectors $v = 2\alpha i + j - k$, $v = i + \alpha j + i$	1	2	4	3				
	$4k$ are perpendicular then $\alpha =$	3	3	3					
		2 2 4	1 2 4						
ix.	Direction cosines of vector is $2\underline{i} + 3\underline{j} +$	$\frac{2}{\sqrt{29}}, \frac{3}{\sqrt{29}}, \frac{4}{\sqrt{29}}$	$\frac{1}{\sqrt{29}}, \frac{3}{\sqrt{29}}, \frac{4}{\sqrt{29}}$	$\frac{2}{\sqrt{29}}, \frac{5}{\sqrt{29}}, \frac{6}{\sqrt{29}}$	None				
	4 <u>k</u>	(1) (1) (1)	(1) (1) (1)	· ·					
х.	$2\underline{i} \times 2\underline{j}$. $\underline{k} =$	-4	4	1	0				
	Question No.01:- Attempt all parts: (02x10=20)								
-									
i.	i. The position vector of the points A,B,C and D are $2\underline{i} - j + \underline{k}$, $3\underline{i} + j$, $2\underline{i} + 4j - 2\underline{k}$, $-\underline{i} - 2j + \underline{k}$								
	respectively. Show that \overrightarrow{AB} is parallel to \overrightarrow{CD} .								
ii.	ii. Find the cosine of the angle between u and v $3i + j - k$, $2i - j + k$.								
iii.	If $\underline{a} + \underline{b} + \underline{c} = 0$ then prove that	$\underline{a} \times \underline{b} =$	$\underline{b} \times \underline{c} = \underline{c} \times \underline{a}$						
iv.	iv. Find α , so that $\left \alpha i + (\alpha + 1)j + 2k \right = 3$								
v.	v. Prove that $a \times (b + c) + b \times (c + a) + c \times (a + b) = 0$								
vi.	vi. Find a vector of magnitude 4 and parallel to $2i - 3j + 6k$.								
vii.	vii. Find α so that the vectors $\underline{u} = \alpha \underline{i} + 2\alpha \underline{j} - \underline{k}$, $v = \underline{i} + \alpha \underline{j} + 3k$ are perpendicular.								
viii.	viii. Find the constant α such that the vectors are coplanar $\underline{i} - \underline{j} + \underline{k}$, $\underline{i} - 2\underline{j} - 3\underline{k}$, $3\underline{i} - \alpha \underline{j} + 5\underline{k}$								
ix. Find a vector from point A to the origin where $\overrightarrow{AB} = 4i - 2j$ and B is (-2, 5).									
х.	x. Prove that the vector $i - 2j + 3k$, $-2i + 3j - 4k$, $i - 3j + 5k$ are coplanar.								
	Question.No.02:-Attempt all questions: (02x05=10)								
	a. Prove that $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$								
	 b. Find the area of parallelogram whose sides vertices is A (0, 0, 0), B(1, 2, 3), C(2, -1, 1), D (3, 1, 4) 								
	4)	IUSE SILLES VEI	(0, 0, 0)	B(1, 2, 3), C(2	, -1, 1), D (3, 1,				