Name:	Subject: Mathematics	Class: 12 th	Time: 80 minutes	Total Marks:	40
Chapter No.02	MJDexpert.com			Obtained marks	

Note: Please attempt any 10 short questions from Question 2. Also, attempt both parts of Question 3. Cutting and removal of any content is strictly prohibited. Question.No.01:- Choose the correct answer. (10x01=10)

		(A)	(B)	(C)	(D)
1.	The instantaneous rate of change of "y" w.r.t " x" is given	dy	dy	dx	dy
	by	dy	dx	dy	dt
2.	If $y = x^n$ then $\frac{dy}{dx}$ is given by	xn^{n-1}	nx^{n+1}	nx^{n-1}	x^{n-1}
3.	If $f(x) = c^{3}$ then $f^{/}(x) =$	$3c^{3}$	$3c^{2}$	0	3c
4.	The derivative of $x^6 w.r.t x^3$ is given by	$6x^{5}$	$3x^2$	$2x^{3}$	<i>x</i> ³
5.	$\frac{d}{dx}\left[cot^{-1}x\right] =$	$\frac{1}{1+x^2}$	$\frac{1}{1+x^4}$	$-\frac{1}{1+x^2}$	None
6.	If $f(x) = \sin x$ then $y_2 =$	$3\cos 3x$	$9\cos 3x$	$-9\sin 3x$	None of these
7.	$\frac{dy}{dx} = \sin h \ 2x$	$2 \cos h 2x$	2 sin <i>h</i> 2 <i>x</i>	$-2\cos h 2x$	$-2\sin h 2x$
8.	$f(x) = f(0) + xf'(0) + x^2f'(0)$ Is called	Taylor series	Binomial	Maclaurin	None of these
			series	series	
9.	$\frac{d}{d}(a^x) =$	$a^x \ln a$	a^x	a^x	ln a
	dx (x)		ln a		$\overline{a^x}$
10.	$\frac{d}{d} [ln(\ln x)]$	1	1	1	<u>x</u>
	dx [content of]	x	$x \ln a$	$x \ln x$	

(02x10=20)

i.	If $y = x^4 + 2x^2 + 2$ prove that $\frac{dy}{dx} = 4x\sqrt{y-1}$
ii.	ii) Differentiate w.r.t "x" $\frac{a+x}{a-x}$
iii.	Find $\frac{dy}{dx}$ of the following parametric equation $x = \theta + \frac{1}{\theta}$ and $y = \theta + 1$
iv.	Apply the Maclaurin series to prove that $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$
٧.	Differentiate w.r.t $\cos^{-1}\frac{x}{a}$
vi.	Find $\frac{dy}{dx}$ if $y = x \cos y$
vii.	Find $\frac{dy}{dx}$ if $y = (\ln x)^{\ln x}$
viii.	If $\tan y (1 + \tan x) = 1 - \tan x$ show that $\frac{dy}{dx} = -1$
ix.	Find $f'(x)$ if $f(x) = e^{\sqrt{x}-1}$
х.	Find $\frac{dy}{dx}$ if $3x + 4y + 7 = 0$

Question.No.03:-Attempt All Questions.

61

(05x02=10)

Α.	Show that	$\frac{dy}{dx} = \frac{y}{x}$	if	$\frac{y}{x} = \tan^{-1}\frac{x}{y}$
В.	If $x = \sin \theta$, $y = \sin m\theta$	then sh	ow that $(1 - x^2)y_2 - xy_1 + m^2y = 0$

Visit mjdexpert.com for more test, notes and past paper of 9th, 10th, 11th and 12th Class