Name:	Subject: Mathematics	Class: 11 th	Time: 80 minutes	Total Marks:	40
Chapter No.03	MJDexpert.com			Obtained marks	

Note: Please attempt any 10 short questions from Question 2. Also, attempt both parts of Question 3. Cutting and removal of any content is strictly prohibited. Question.No.01: - Choose the correct answer. (10x01=10)

1.	If all the entries in any row (column) are zero then value of determinant is	1	2	0	-2
2.	Two matrices are possible for multiplication if	Column of 1 st	rows of 1 st	Column of 1 st	None of these
			matrix = rows	matrix = rows of	
			of 2 nd matrix	2 nd matrix	
3.	If $A = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & 0 \end{bmatrix}$ then AB is equals to :	$\begin{bmatrix} 10 & 0 \\ -5 & 0 \end{bmatrix}$	$\begin{bmatrix} 10\\ 0 \end{bmatrix}$	[10 0]	$\begin{bmatrix} 10\\-5 \end{bmatrix}$
4.	Matrix multiplication is not containing	Associative law	Commutative	Both A and B	None of these
5.	5. The value of determinant is change if any two		Rows to	Rows are identical	None of these
			column is		
			change		
6.	6. If A is 2x3 and B is 3x2 matrices then they are conformable for		multiplication	subtraction	None of these
7.	The principal diagonal of a square matrix is also called is	Leading diagonal	Main diagonal	Square matrix	Both A and B
8.	8. $\begin{vmatrix} a & b \\ c & d \end{vmatrix} =$		(ad – bc)	(ac – bd)	(ab – cd)
9.	9. A square matrix is called skew symmetric if		$A^t \neq A$	$A^t = -A$	$A^t \neq -A$
10.	$\begin{vmatrix} 3 & -2 & -1 \\ 1 & -1 & -1 \\ -2 & 1 & 2 \end{vmatrix} =$	1	2	-1	3
	Question.No.02: -Solve all parts.			(02x10	=20)
				·	•
i.	Solve the system of Linear equations $3x - 5y$	y = 1 , $-2x + 2x + 3$	+ y = -3		
ii.	Define diagonal matrix.				
iii. Without expansion Show that $\begin{vmatrix} bc & ca & ab \\ 1/a & 1/b & 1/c \\ a & b & c \end{vmatrix} = 0$					
iv.	Find X if $X\begin{bmatrix}5&2\\-2&1\end{bmatrix} = \begin{bmatrix}-1&5\\12&3\end{bmatrix}$				
٧.	If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the value	ue of a and b.	5		
vi	If A and B are square matrices of the same order the	hen evolain why	in general (A -	$(R)^2 \neq \overline{A^2 + 2AB}$	$R \perp R^2$

If A and B are square matrices of the same order, then explain why in general $(A + B)^2 \neq A^2 + 2AB + B^2$ vı. 3x - 2A = B if $A = \begin{bmatrix} 2 & 3 & -2 \\ -1 & 1 & 5 \end{bmatrix}$ $B = \begin{bmatrix} 2 & -3 & 1 \\ 5 & 4 & -1 \end{bmatrix}$ solve the following equation for X. vii.

viii.	Find the inverse of the following matrix $\begin{bmatrix} 2i & i \\ i & -i \end{bmatrix}$
ix.	Find x and y if $\begin{bmatrix} 2 & 0 & x \\ 1 & y & 3 \end{bmatrix} + 2 \begin{bmatrix} 1 & x & y \\ 0 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 4 & -2 & 3 \\ 1 & 6 & 1 \end{bmatrix}$
x.	Find the value of λ if the matrix is singular $\begin{bmatrix} 4 & \lambda & 3 \\ 7 & 3 & 6 \\ 2 & 3 & 1 \end{bmatrix}$.

Question.No.03:-Attempt all parts:

(02x05=10)

Α.	Solve the system of lir	near equation by Cramer 's rule	2x + 2y + z = 3	3x - 2y - 2z = 1; $5x + y - 3z = 2$
В.	Find the Rank $\begin{bmatrix} 1 & - \\ 2 & - \\ 3 & 3 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

Visit mjdexpert.com for more test, notes and past paper of 9th, 10th, 11th and 12th Class