Name:	Subject: Mathematics	Class: 11 th	Time: 80 minutes	Total Marks:	40
Chapter No.10&14	MJDexpert.com			Obtained marks	

Note: Please attempt any 10 short questions from Question 2. Also, attempt both parts of Question 3. Cutting and removal of any content is strictly prohibited.

Question.No.01: - Choose the correct answer.

(10x01=10)

1.	$\tan(\frac{3\pi}{2} + \theta) =$	cotθ	tanθ	$-cot\theta$	$-tan\theta$
2.	The value of $cos315^\circ$ is:	0	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$
3.	If $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) =$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	π 6	<u>π</u> 5
4.	The fundamental law of trigonometry is:	$Cos(\alpha + \beta)$	$Cos(\alpha - \beta)$	$Sin(\alpha + \beta)$	$Sin(\alpha - \beta)$
5.	If one acute angle of right triangle is 60°, then another acute angle is:	45°	145°	65°	30°
6.	$Tan(270 - \theta) =$	Cotθ	tanθ	–Cotθ	-tanθ
7.	Trigonometric function has solution.	0	1	Infinite	No solution
8.	If $tanx = -1$ then general angle is:	$\left\{\frac{3\pi}{4} + n\pi\right\}$	$\left\{\frac{3\pi}{4}-n\pi\right\}$	$\left\{\frac{3\pi}{4} + 2n\pi\right\}$	$\left\{\frac{3\pi}{4}-2n\pi\right\}$
9.	When we look an object below the horizontal ray, the angle formed is	Angle of elevation	Angle of depression	angle	$tan^{-1} \frac{A-B}{1-AB}$
10.	The solution of $cosec \theta = 2$ is	$\frac{\pi}{2}$, $\frac{3\pi}{2}$	$\frac{5\pi}{2}$, $\frac{3\pi}{2}$	$\frac{\pi}{6}$, $\frac{5\pi}{6}$	$\frac{\pi}{3}$, $\frac{\pi}{2}$

Question.No.02: -Solve all parts.

(02x10=20)

- i. Show that $Cos\left(\frac{\pi}{2} \theta\right) = Sin\theta$.
- ii. Prove that $\sqrt{\frac{1+\sin\alpha}{1-\sin\alpha}} = \frac{1+\sin\frac{\alpha}{2}}{1-\sin\frac{\alpha}{2}}$
- iii. Show that $Cos\left(\frac{\pi}{2} \theta\right) = Sin\theta$.
- iv. Find the value of $\cos 2\alpha$ if $\cos \alpha = \frac{3}{5}$.
- v. If α , β , γ are the angles of t triangle then prove that $\tan(\alpha + \beta) = -tan\gamma$.
- vi. Find the solution of $cosec\theta = 2$.
- vii. Solve the trigonometric equation $\cot^2 \theta = \frac{1}{2}$.
- viii. Define reference angle.
 - ix. Express as sum or difference $cos7\theta cos\theta$.
- x. Find the solution of $2\sin^2\theta \sin\theta = 0$

Question.No.03: -

(02x05=10)

- A. Prove that $\frac{\cos 8^{\circ} \sin 8^{\circ}}{\cos 8^{\circ} + \sin 8^{\circ}} = \tan 37^{\circ}$
- B. Prove that Prove that $\frac{\sin^2(\pi+\theta)\tan(\frac{3\pi}{2}-\theta)}{\cot^2(\frac{3\pi}{2}-\theta)\cos^2(\pi-\theta)\csc(2\pi-\theta)}=\cos\theta$

Visit mjdexpert.com for more test, notes and past paper of 9th, 10th, 11th and 12th Class