Name:	Subject: Mathematics	Class: 11 th	Time: 80 minutes	Total Marks:	40
Chapter No.08	MJDexpert.com			Obtained marks	

Note: Please attempt any 10 short questions from Question 2. Also, attempt both parts of Question 3. Cutting and removal of any content is strictly prohibited. **Question No.01:** Choose the correct answer. (10x01=10)

	Questioninto.or. Choose the contest answer.			(10/01	-10)
		Α.	В.	C.	D.
i.	The number of expansions of $(x^2 - 1)^7$ is:	2	7	8	12
ii.	In the expansion of $(3 + x)^4$ middle term is:	81	$54x^2$	$26x^2$	<i>x</i> ⁴
iii.	The algebraic expression consisting of two term is called:	Monomial	Binomial	Trinomial	Polynomial
iv.	The sum of exponent "a" and "b" in every term in the expansion of $(a + b)^n$ is	1	n	<i>n</i> + 1	n-1
۷.	The sum of binomial coefficients in the expansion of $(1 + x)^4$ is:	8	10	16	32
vi.	Sum of binomial coefficients is	N	2 ⁿ	2n	n^2
vii.	The expansion of $(8 - 2x)^{-1}$ is valid only if:	<i>x</i> > 4	x < 4	x = 0	x = 4
viii.	The middle term of the expansion of $(x - \frac{1}{x})^{12}$ is.	6 th term	7 th term	8 th term	5 th term
ix.	For what value of expression $3^n > n!$ is untrue if $n \in \mathbb{Z}$.	n = 6	<i>n</i> = 7	n=2	<i>n</i> = 3
х.	Using binomial theorem (2.02) ⁴ approximation up to two decimal place	16.64	16.44	16.40	16.60

Question.No.02: -Solve all parts.

(02x10=20)

i.	State principle of mathematical induction?
ii.	Calculate $(0.97)^3$ by means of binomial theorem?

iii.	Use mathematical induction to prov	ve th	e formula 1+3+5+7	+(2n-1)= n^2 .

iv.	Define Binomial theorem.
-----	--------------------------

٧.	Find the 5 th term in the expansion	$(\frac{3}{2}x - \frac{1}{3}x)^{11}$
----	--	--------------------------------------

vi. Expand up to 3 terms $(4-3x)^{1/2}$.

vii. If x is so small that its square and higher power can be neglected show that $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3}{2}x$

viii. Use binomial theorem to expand $(\frac{x}{2} - \frac{2}{x^3})^6$.

ix. By means of binomial theorem expand $(2.02)^4$.

x. Expand $\sqrt{99}$ by using binomial expansion to find its value up to three decimal place.

Question.No.03:-

a) Use binomial theorem to expand $(\frac{x}{2y} - \frac{2y}{x})^8$. b) If x is nearly equal 1, then prove that $px^p - qx^q \approx (p - q)x^{p+q}$.

Visit mjdexpert.com for more test, notes and past paper of 9th, 10th, 11th and 12th Class

(02x05=10)