Name:	Subject: Mathematics	Class: 11 th	Time: 80 minutes	Total Marks:	40
Chapter No.04	MJDexpert.com			Obtained marks	

Note:Please attempt any 10 short questions from Question 2. Also, attempt both parts
of Question 3. Cutting and removal of any content is strictly prohibited.Question.No.01:- Choose the correct answer.(10x01=10)

				•	,
		Α.	В.	С.	D.
i.	The polynomial $ax^2 + bx + c = 0$ is quadratic if	a ≠ 0	$a \neq 0, b \neq 0$	a > 0	a < 0
ii.	Solution set of the equation $x^2 - 3x + 2 = 0$ is	{-1,2}	{1,-2}	{-1,-2}	{1,2}
iii.	5 1,	1	2	3	4
	0 is				
iv.	Techniques for solving a quadratic equation are	1	2	3	4
٧.	Sum of cube root of unity is	1	0	3	2
vi.	Product of all the four roots of unity is	-1	1	2	3
vii.	$(1+\omega-\omega^2)^8$	256	256ω	-256ω	-256
viii.	Shortcut method of long division of a	Factor	Reminder	Synthetic	None of these
	polynomial is called	theorem	theorem	division	
ix.	Formula of formation an equation is	$x^2 + sx$	$x^2 + sx - p$	$x^2 - sx + p$	$x^2 - sx - p$
		+ p			
х.	If $b^2 - 4ac > 0$ and not a perfect square then	Rational	Imaginary	Irrational	Equal
	root will be.				

Question.No.02:-Solve all parts.

(02x10=20)

i. Solve by completing square Method $2x^2 + 12x - 110 = 0$ ii. Solve $4 \cdot 2^{2x+1} - 9 \cdot 2^x + 1 = 0$ iii. Show that the roots of $x^2 + (mx + c)^2 = a^2$ will be equal, if $c^2 = a^2(1 + m^2)$. iv. Show that $x^3 - y^3 = (x - y)(x - \omega y)(x - \omega^2 y)$ v. Evaluate $(1 + \omega - \omega^2)(1 - \omega + \omega^2)$ vi. If α , β are the roots of $3x^2 - 2x + 4 = 0$ find the value of $\alpha^3 + \beta^3$ vii. Evaluate $(1 + \omega - \omega^2)(1 - \omega + \omega^2)$ viii. Define reciprocal equation. ix. When $x^4 + 2x^3 + kx^2 + 3$ is divided by $x - 2$, the remainder is 1. Find the value of K. x. Use the factor theorem to determine if the first polynomial is a factor of the second polynomial $x - 2$, $x^3 + x^2 - 7x + 1$	
iii. Show that the roots of $x^2 + (mx + c)^2 = a^2$ will be equal, if $c^2 = a^2(1 + m^2)$. iv. Show that $x^3 - y^3 = (x - y)(x - \omega y)(x - \omega^2 y)$ v. Evaluate $(1 + \omega - \omega^2)(1 - \omega + \omega^2)$ vi. If α , β are the roots of $3x^2 - 2x + 4 = 0$ find the value of $\alpha^3 + \beta^3$ vii. Evaluate $(1 + \omega - \omega^2)(1 - \omega + \omega^2)$ viii. Define reciprocal equation. ix. When $x^4 + 2x^3 + kx^2 + 3$ is divided by $x - 2$, the remainder is 1.Find the value of K. x. Use the factor theorem to determine if the first polynomial is a factor of the second polynomial	i. Solve by completing square Method $2x^2 + 12x - 110 = 0$
iv. Show that $x^3 - y^3 = (x - y)(x - \omega y)(x - \omega^2 y)$ v. Evaluate $(1 + \omega - \omega^2)(1 - \omega + \omega^2)$ vi. If α , β are the roots of $3x^2 - 2x + 4 = 0$ find the value of $\alpha^3 + \beta^3$ vii. Evaluate $(1 + \omega - \omega^2)(1 - \omega + \omega^2)$ viii. Define reciprocal equation. ix. When $x^4 + 2x^3 + kx^2 + 3$ is divided by $x - 2$, the remainder is 1. Find the value of K. x. Use the factor theorem to determine if the first polynomial is a factor of the second polynomial	ii. Solve $4 \cdot 2^{2x+1} - 9 \cdot 2^x + 1 = 0$
v. Evaluate $(1 + \omega - \omega^2)(1 - \omega + \omega^2)$ vi. If α , β are the roots of $3x^2 - 2x + 4 = 0$ find the value of $\alpha^3 + \beta^3$ vii. Evaluate $(1 + \omega - \omega^2)(1 - \omega + \omega^2)$ viii. Define reciprocal equation. ix. When $x^4 + 2x^3 + kx^2 + 3$ is divided by $x - 2$, the remainder is 1. Find the value of K. x. Use the factor theorem to determine if the first polynomial is a factor of the second polynomial	iii. Show that the roots of $x^2 + (mx + c)^2 = a^2$ will be equal, if $c^2 = a^2(1 + m^2)$.
vi. If α , β are the roots of $3x^2 - 2x + 4 = 0$ find the value of $\alpha^3 + \beta^3$ vii. Evaluate $(1 + \omega - \omega^2)(1 - \omega + \omega^2)$ viii. Define reciprocal equation. ix. When $x^4 + 2x^3 + kx^2 + 3$ is divided by $x - 2$, the remainder is 1. Find the value of K. x. Use the factor theorem to determine if the first polynomial is a factor of the second polynomial	iv. Show that $x^3 - y^3 = (x - y)(x - \omega y)(x - \omega^2 y)$
vii. Evaluate $(1 + \omega - \omega^2)(1 - \omega + \omega^2)$ viii. Define reciprocal equation.ix. When $x^4 + 2x^3 + kx^2 + 3$ is divided by $x - 2$, the remainder is 1. Find the value of K.x. Use the factor theorem to determine if the first polynomial is a factor of the second polynomial	v. Evaluate $(1 + \omega - \omega^2)(1 - \omega + \omega^2)$
viii. Define reciprocal equation.ix. When $x^4 + 2x^3 + kx^2 + 3$ is divided by $x - 2$, the remainder is 1. Find the value of K.x. Use the factor theorem to determine if the first polynomial is a factor of the second polynomial	vi. If α , β are the roots of $3x^2 - 2x + 4 = 0$ find the value of $\alpha^3 + \beta^3$
ix. When $x^4 + 2x^3 + kx^2 + 3$ is divided by $x - 2$, the remainder is 1. Find the value of K.x. Use the factor theorem to determine if the first polynomial is a factor of the second polynomial	vii. Evaluate $(1 + \omega - \omega^2)(1 - \omega + \omega^2)$
x. Use the factor theorem to determine if the first polynomial is a factor of the second polynomial	viii. Define reciprocal equation.
	ix. When $x^4 + 2x^3 + kx^2 + 3$ is divided by $x - 2$, the remainder is 1. Find the value of K.

Question.No.03:-

(02x05=10)

a)	Solve the following equation by factorization $\frac{a}{ax-1} + \frac{b}{bx-1}$	$\frac{1}{1} = a + b$
b)	If the roots of $px^2 + qx + q = 0$ are " α " and " β " t	hen prove that $\sqrt{\frac{lpha}{eta}} + \sqrt{\frac{eta}{lpha}} + \sqrt{\frac{eta}{p}} = 0$

Visit mjdexpert.com for more test, notes and past paper of 9th, 10th, 11th and 12th Class